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High Dimensional Function Approximation (Regression, Hypersurface 

Fitting) by an Active Set Least Squares Learning Algorithm 

Vojislav Kecman 

The University of Auckland, Auckland, New Zealand 

Abstract 

 

This is a report on solving regression (hypersurface fitting, function approximation) prob-

lems in high dimensional spaces by novel learning rule called Active Set - Least Squares 

(AS-LS) algorithm for kernel machines (a.k.a. support vector machines (SVMs)) and RBF 

(a.k.a. regularization) networks, multilayer perceptron NNs and other related networks. 

Regression is a classic statistical problem of learning from empirical data (i.e., examples, 

samples, measurements, records, patterns or observations) where the presence of a training 

data set D = {[x(i), y(i)] ∈ ℜ n
 × ℜ, i = 1,...,N} is a starting point in reaching the solution. 

(N stands for the number of the training data pairs and it is therefore equal to the size of a 

set D). Often, yi is denoted as di (ti), where d (t) stands for a desired (target) value. The data 

set D is the only information available about the dependency of y upon x. Hence, we are 

dealing with the supervised learning problem and solution technique here. 

 The basic aim of this report is to give, as far as possible, a condensed (but systematic) 

presentation of a novel regression learning algorithm for training various data modeling 

networks. The AS-LS learning rule resulted from an extension of the active set training al-

gorithm for SVMs as presented in (Vogt and Kecman, 2004, 2005). Unlike for SVMs 

where one uses only the selected support vectors (SVs) while computing their dual vari-

ables αi, in an AS-LS method all the data will be used while calculating the weights wi of 

the regressors (i.e., SVs) chosen at a given iteration step. Our focus will be on the con-

structive learning algorithm for regression problems (although the same approach applies 

to the classification (pattern recognition) tasks1). In AS-LS we don’t solve a quadratic pro-

gramming (QP) problem typical for SVMs. Instead, the overdetermined least squares prob-

lem will be solved at each step of an iterative learning algorithm. As in active set method 

for SVMs, a single data point violating the ‘Karush-Kuhn-Tucker’ (KKT)2 conditions the 

most will be selected and added as the new support vector i.e., regressor at each step. 

However, the weights wi of the selected regressors will be computed by using all the avail-

able training data points. Thus, unlike in SVMs, the non-regressors (non-SVs) do influence 

the weights of regressors (SVs) in an AS-LS algorithm. A QR decomposition of a systems 

matrix H for calculating wi will be used in an iterative updating scheme with no need to 

find the matrix Q at all. This makes AS-LS fast algorithm. In addition, the AS-LS algo-

rithm with box-constraints -C ≤ wi ≤ C i = 1, NSV, has also been developed, and this resem-

bles the soft regression in SVMs. The resulting model is parsimonious, meaning the one 

with a small number of support vectors (hidden layer neurons, regressors, basis functions). 

Comparisons to the results obtained by classic SVMs are also shown. A weighted AS-LS 

algorithm that is very close to active set method for solving QP based SVMs learning 

problem has been introduced too. 

                                                           
1 At the moment of writing the report the first classification problem runs have been performed only. 
2 Strictly, we are not solving constrained QP problem and there are no KKT conditions in AS-LS. 

Maximal violator stands for the farthest data point from the approximating function at each step. 
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1 Basics of Developing Regression Models from Data 

Today, we are surrounded by an ocean of all kind of experimental data (i.e., examples, 

samples, measurements, records, patterns, pictures, tunes, images observations, …, etc) 

produced by various sensors, cameras, microphones, pieces of software and/or other hu-

man made devices. The amount of data produced is enormous and ever increasing. The 

first obvious consequence of such a fact is - humans can't handle such massive quantity of 

data which are usually appearing in the numeric shape as the huge matrices. Typically, the 

number of their rows tells about the number of data pairs collected, and the number of col-

umns represents the dimensionality of data. The modeling approaches coping with huge 

data problems are called by various names notably neural networks (NNs), various learn-

ing (e.g., Bayesian) networks, decision trees, support vector machines, kernel machines, 

radial basis functions networks (a.k.a. regularization networks), wavelet networks, multi-

layer perceptrons, and the list goes on. Classic Fourier series and polynomial approxima-

tions fall into this category too. Additionally, this field of research is called by various 

names too - data mining i.e., knowledge discovery i.e., machine learning i.e., pattern rec-

ognition i.e., classification i.e., regression i.e., statistical learning etc.  

 All the models mentioned above can be used for solving regression tasks. The regres-

sion problem setting is as follows: there is some unknown (non)linear dependency (map-

ping, function) y = f(x) between some n-dimensional input vector x and scalar output y (or 

the vector output y in the case of multiple mapping which is not being treated here). There 

is no information about the underlying joint probability functions that created data but one 

can collect the data generated. Thus, one must perform a distribution-free learning from 

training data set D = {[x(i), y(i)]} which is the only information about f(x) available. The 

novel AS-LS learning algorithm for regression presented here is an extension of the active 

set method for solving the QP based SVMs’ training. The very basics of SVMs and their 

learning algorithms involved can be found in (Vapnik, 1995 and 1998; Kecman 2001, 

2004;). For readers interested in application of SVMs rather than in their theory (Kecman, 

2004) may be the most recommended reading. Readers familiar with both SVMs and ac-

tive set method for solving their QP based learning problem can skip section 1 and 2 and 

start reading about the AS-LS method in section 3 on page 15. 

 However before introducing the basics of regression SVMs and before presenting an 

active set algorithm for solving the QP based problem of SVMs training, it may be useful 

to remind that all the SVMs’ learning algorithms which will be mentioned (as well as 

many others not referred here) are in essence the subset selection methods. In the case of 

classic SVMs, these algorithms have the task to pick up (out of N training data points i.e., 

vectors, in input space) the small number NSV of the inputs points which will create an ap-

proximating function fa(x) such that abs(fa(xi) - yi) ≤ ε, (i = 1, N) in the case of the so-

called hard regression. These NSV data points, called free SVs, lie on the ε-tube and their 

dual variables fulfill 0 < abs(αi  - αi*) < C. The name support vector comes from the fact 

that only they support forming of fa(xi). In the case of a soft regression, some data will be 

allowed to lie outside the tube. They are dubbed bounded support vectors because for them 

abs(αi  - αi*) = C i.e., either αi  or αi* are bounded at C.  

 AS-LS performs the same task, namely it selects a set of NSV supporting training data 

points (support vectors i.e., regressors i.e., basis functions) out of N training data pairs, in a 
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series of iterative learning steps. There are also many, unrelated to SVMs, subset selection 

algorithms. One of the most prominent in the field of RBF networks used to be the or-

thogonal least squares (OLS) approach proposed in (Chen et al., 1991). A detailed presen-

tation, as well as an analysis and a comparisons with genetic algorithms in training RBFs 

networks, is given in (Kecman, 2001). Note that the OLS for a Gaussian RBFs is identical 

to the matching pursuit method with pre-fitting which is introduced below. Thus, in com-

parisons to AS-LS both methods seem to be fairly slow while providing results comparable 

to AS-LS. There are many others subset selection algorithms and all of them are trying to 

reduce the huge computational costs connected to an existence of many possible subsets of 

NSV  basis function which can be selected from a given set of N function. Recently, some 

variants of genetic algorithms (i.e., evolutionary computing ones) have been used for se-

lecting the best-in-some-norm subset of NSV out of N data points. However, there is a seri-

ous problem in subset selection because the number of possible subsets grows extremely 

quickly with the number N of training data (i.e., with a number of columns of a complete 

matrix H). In fact there are ( )( )!/ ! !SV SVN N N N−  possible subsets. Just for example, hav-

ing only 100 training data pairs and wanting to have a network with 10 basis functions 

would mean that one has to check all the ( ) 13
100!/ 10!90! 1.731*10=  possible subsets in 

order to find the best one (in some norm, which is usually L2 norm i.e., sum of error 

squares). Obviously such an exhaustive search from a ‘dictionary of functions’ is prohibi-

tive task and there have been many attempts to resolve such problems successfully.  

One, in machine learning and statistical literature, popular subset selection algorithm is 

a Matching Pursuit (MP) method (Qian et al, 1992; Mallat and Zhang, 1993, the second 

one being more popular for providing the MP software) which creates a function as a 

weighted sum of basis functions selected from a ‘dictionary of functions’. Almost all the 

classic and novel networks do the same, namely they create the approximating function as  
 

1
( , )

SVN

a i ii
f w g

=
=∑x w , 

 

where the selected basis functions gi may (but don’t necessarily have to) be centered, or as-

sociated, with input vectors of the training data points. MP, same as OLS and AS-LS in-

troduced here, sequentially adds functions to an initially empty basis, to approximate a tar-

get function in the least-squares sense. There are several versions of MP algorithm, and we 

mention here three, named as - basic MP, and two sophisticated versions known as MP 

with back-fitting and MP with pre-fitting. Details of the algorithms can be seen in (Vincent 

and Bengio, 2002) where they have compared the kernel MP with SVMs for classification 

problems. They have shown that MP favorably competes with SVMs in terms of test error 

having at the same time much less basis functions (i.e., SVs) for various classification 

benchmarks. Exactly the same will be shown here for solving regression problems and by 

comparing AS-LS to SVMs.  

An iterative AS-LS method is related to all the other iterative methods mentioned above 

(OLS, MP, genetic algorithm) in training the machine learning models (SVMs, RBFs 

and/or neural networks). However, AS-LS algorithm is much faster than the OLS i.e., MP 

with pre-fitting, which suffer from a heavy computational burden while orthogonalizing 

columns of some matrix and selecting the regressors respectively. In particular, it is much 

faster than genetic algorithms methods. AS-LS is also a greedy algorithm that creates par-

simonious (sparse) models able to accurately model given regression function with same 

accuracy as the SVMs models which use much more supporting basis functions (SVs). 
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1.1 Classic Regression Support Vector Machines Learning Setting 

Here, without any extensive derivation, the final learning model for regression SVMs3 will 

be shown only as the necessary starting point for the active set method in solving QP prob-

lems which will be introduced consecutively. The learning setting is as follows: the SVM 

is given l training data from which it attempts to learn the input-output relationship (de-

pendency, mapping or function) f(x). A training data set D = {[x(i), y(i)] ∈ ℜ n
 × ℜ, i = 

1,...,N} consists of N pairs (x1, y1), (x2, y2), …, (xN, yN), where the inputs x are n-

dimensional vectors (x ∈ ℜ n
) and system responses y ∈ ℜ, are continuous values.  

 After creating primal Lagrangian, and taking into account KKTs involved, the SVMs’ 

learning algorithm in a dual domain is the following QP problem  
 

minimize Ld( α ) = 0.5 T T+α Hα f α , (1) 

subject to the constraints 

( )* *

1 1 1
or  0

N N N

i i i ii i i
α α α α

= = =
= − =∑ ∑ ∑  (2a) 

0 ≤ αi ≤ C  i = 1, N, (2b) 

0 ≤ α i
*
 ≤ C  i = 1, N. (2c) 

 

Where the dual variable vector α  = [α1,  α2, . . ., αN,  α1
*
,  α2

*
, . . . , α N

*
]

T, Hessian matrix  

H = [G   -G; -G   G], kernel (a.k.a. design) matrix G is an (N, N) matrix with entries Gij = 

[xi
T
xj] for a linear regression (the case of the nonlinear regression is discussed on page 8) 

and f = [ε - y1,  ε - y2, . . ., ε - yN,  ε + y1,  ε + y2, . . . , ε + yN]
T
. (Note that in a linear case 

Gij, as given above, is a badly conditioned matrix and we rather use Gij = [xi
T
xj + 1] in-

stead). Eq. (1) is written in a form of some standard optimization routine that typically 

minimizes given objective function subject to constraints (2). Note that the size of the Hes-

sian matrix in regression problem is (2N, 2N) and there are 2N unknown dual variables (N 

αi-s and N αi
*
-s).  

The learning stage (minimizing the dual Lagrangian (1)) results in N Lagrange multi-

plier pairs (αi, αi
*
). After the learning, the number of nonzero parameters αi or αi

*
 is equal 

to the number of SVs (regressors, basis functions, hidden layer neurons). However, this 

number does not depend on the dimensionality of input space and this is particularly im-

portant when working in very high dimensional spaces. Because at least one element of 

each pair (αi, αi
*
), i = 1, N, is zero, the product of αi and αi

*
 is always zero, i.e., αiαi

*
 = 0. 

At the optimal solution the following KKT complementarity conditions must be fulfilled  

( )T
+ 0i i i ib yα ε ξ− + + =w x , (3) 

( )* T *
- - 0i i i ib yα ε ξ+ + + =w x , (4) 

                                                           
3 Readers familiar with regression SVMs can skip this introductory section on SVMs and start read-

ing section 2 on active set methods for solving QP based SVMs learning problem. 
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( ) 0i i i iCβ ξ α ξ= − = , (5) 

* * * *( ) 0i i i iCβ ξ α ξ= − = . (6) 

 

(5) states that for 0 < αi < C, 0iξ =  holds. Similarly, from (6) follows that for 0 < αi
*
 < 

C, * 0iξ =  and, for 0 < αi , αi
*
< C, from (3) and (4) follows,  

 

T + 0i ib y ε− + =w x , (7) 

T- - 0i ib y ε+ + =w x . (8) 

 

Thus, for all the data points fulfilling y – f(x) = +ε , dual variables αi must be between 0 

and C, or 0 < αi < C, and for the ones satisfying y – f(x) = -ε , αi
*
 take on values 0 < αi

*
 < 

C. These data points are called the free (or unbounded) support vectors (see Fig. 1). They 

allow computing the value of the bias term b as given below 
 

T

i ib y ε= − −w x , for 0 < αi < C, (9a) 

T

i ib y ε= − +w x , for 0 < αi
*
 < C. (9b) 

 

The calculation of a bias term b is numerically very sensitive, and it is better to compute 

the bias b by averaging over all the free support vector data points. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The parameters used in (1-D) support vector regression. Filled squares data       are support 

vectors, and the empty     ones are not. Hence, SVs can appear only on the tube boundary (free or un-

bounded SVs) or outside the tube (bounded SVs). 

The final observation follows from (5) and (6) and it tells that for all the data points out-

side the ε-tube, i.e., when both 0iξ >  and * 0iξ > , both αi and αi
*
 equal C, i.e.,αi = C for 

the points above the tube and αi
*
 = C for the points below it. These data are the so-called 

bounded support vectors. Also, for all the training data points within the tube, or when | y – 

ξj
* 

x 

 y    f(x, w) 

Predicted f(x, w) 

solid line 
ε 

ε 

Measured values 

ξi

 yi 

 yj 

Bounded SV 

Free or  
Unbounded SV 

Bounded SV 
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f(x) | < ε, both αi and αi
*
 equal zero and they are neither the support vectors nor do they 

construct the decision function f(x). 

After calculation of Lagrange multipliers αi and αi
*
, we can find an optimal weight vec-

tor of the regression hyperplane in the linear regression model as 
 

wo = 
*

1
( )

N

i i ii
α α

=
−∑ x . (10) 

 

The best regression hyperplane obtained is given by 
 

f(x, w) = wo
T
x + b = 

*

1
( )

N T

i i ii
α α

=
−∑ x x + b. (11) 

 

More interesting, more common and the most challenging problem is aimed at solving the 

nonlinear regression tasks. A generalization to nonlinear regression is performed by carry-

ing the mapping to the feature space, or by using kernel functions instead performing the 

complete mapping which is usually of extremely high (possibly of an infinite) dimension. 

Thus, the nonlinear regression function in an input space will be devised by considering a 

linear regression hyperplane in the feature space.  

 As for the creating a nonlinear regression SV machines the basic idea and steps in their 

design are: first, a mapping of input vectors x ∈ ℜℜℜℜ n
 into vectors ΦΦΦΦ(x) of a higher dimen-

sional feature space F (where ΦΦΦΦ represents mapping: ℜℜℜℜ n → ℜℜℜℜ 
f 
) takes place and then, we 

solve a linear regression problem in this feature space. A mapping ΦΦΦΦ(x) is the chosen in 

advance, or fixed, function. Note that an input space (x-space) is spanned by components xi 

of an input vector x and a feature space F (ΦΦΦΦ-space) is spanned by components φi(x) of a 

vector ΦΦΦΦ(x). By performing such a mapping, we hope that in a ΦΦΦΦ-space, our learning algo-

rithm will be able to perform a linear regression hyperplane by applying the linear regres-

sion SVM formulation presented above. We also expect this approach to again lead to 

solving a quadratic optimization problem with inequality constraints in the feature space. 

The (linear in a feature space F) solution for the regression hyperplane f = w
TΦΦΦΦ(x) + b, will 

create a nonlinear regressing hypersurface in the original input space. The most popular 

kernel functions are polynomials and RBF with Gaussian kernels. Some popular kernels 

are given in a Table 1 below. 

 In the case of the nonlinear regression, the learning problem is again formulated as the 

minimization of a dual Lagrangian (1) with the Hessian matrix H structured in the same 

way as in a linear case, i.e. H = [G   -G; -G   G] but with the changed Grammian matrix G 

which is now given as  
 

11 1

1

l

ii

l ll

G G

G

G G

 
 =  
  

G

�

� �

�

, (12) 

 

where the entries   Gij = ΦΦΦΦT
(xi)ΦΦΦΦ(xj) = K(xi, xj), i, j = 1, N. 
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Table 1 Popular Admissible Kernels 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

After calculating Lagrange multiplier vectors α  and α
*
, we can find an optimal weighting 

vector (not a weight vector) of the kernels expansion as 
 

vo = α  - α
*
. (13) 

 

Note however the difference in respect to the linear regression where the expansion of a 

regression function is expressed by using the optimal weight vector wo. Here, in a NL 

SVMs’ regression, the optimal weight vector wo could often be of infinite dimension 

(which is the case if the Gaussian kernel is used). Consequently, we neither calculate wo 

nor we have to express it in a closed form. Instead, we create the best nonlinear regression 

function by using the weighting vector vo and the kernel (Grammian) matrix G as follows, 
 

f(x, vo) = Gvo + b, (14) 
 

In fact, the last result follows from the very setting of the learning (optimizing) stage in a 

feature space where, in all the equations above from (1) to (11), we replace xi by the corre-

sponding feature vector ΦΦΦΦ(xi). This leads to the following changes:  
 

- instead Gij = xi
T
xj we get Gij = ΦΦΦΦT

(xi) ΦΦΦΦ(xj) and, by using the kernel function K(xi, xj) 

= ΦΦΦΦT
(xi) ΦΦΦΦ(xj), it follows that Gij = K(xi, xj).  

 

- similarly, (10) and (11) change as follows: 
 

wo = 
*

1
( ) ( )

N

i i ii
α α

=
−∑ Φ x , and, (15) 

 

f(x, w) = wo
TΦΦΦΦ(x) + b =

*

1
( ) ( )

N T

i i ii
α α

=
−∑ Φ x ΦΦΦΦ(x) + b 

=
*

1
( ) ( , )

N

i i ii
Kα α

=
−∑ x x + b 

(16) 

 

If the bias term b is explicitly used as in (14) then, for a NL SVMs’ regression, it can be 

calculated from the upper SVs as, 
 

Kernel functions Type of classifier 

K(x, xi) = (x
T
xi)  Linear, dot product, kernel, CPD 

K(x, xi) = [(x
T
xi) + 1]

d    Complete polynomial of degree d, PD 

11
[( ) ( )]

2( , )
T

i i

iK e
−− − Σ −

=
x x x x

x x  Gaussian RBF, PD 

K(x, xi) = tanh[(x
T
xi) + b]* Multilayer perceptron, CPD 

2

1
( , )

|| ||
i

i

K
β

=
− +

x x
x x

 Inverse multiquadric function, PD 

*only for certain values of b, (C)PD = (conditionally) positive definite 
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*

1

*

1

( ) ( ) ( )

( ) ( , )

N freeupper SVs T

i j j j ij

N freeupper SVs

i j j i jj

b y

y K

α α ε

α α ε

=

=

= − − −

= − − −

∑

∑

Φ x Φ x

x x
, for 0 < αi < C, (17a) 

or from the lower ones as, 

*

1

*

1

( ) ( ) ( )

( ) ( , )

N free lower SVs T

i j j j ij

N free lower SVs

i j j i jj

b y

y K

α α ε

α α ε

=

=

= − − +

= − − +

∑

∑

Φ x Φ x

x x
, for 0 < αi

*
 < C. 

(17b) 

 

Note that αj
*
 = 0 in (17a) and so is αj = 0 in (17b). Again, it is much better to calculate the 

bias term b by an averaging over all the free support vector data points. 

 There are few learning parameters in constructing SV machines for regression. The 

three most relevant are the insensitivity zone ε, the penalty parameter C (that determines 

the trade-off between the training error and VC dimension of the model), and the shape pa-

rameters of the kernel function (variances of a Gaussian kernel, order of the polynomial, or 

the shape parameters of the inverse multiquadrics kernel function). All three parameters’ 

sets should be selected by the user. To this end, the most popular method is a cross-

validation. Unlike in a classification, for not too noisy data (primarily without huge out-

liers), the penalty parameter C could be set to infinity and the modeling can be controlled 

by changing the insensitivity zone ε and shape parameters only. However, in the case of 

high noise, or in the presence of outliers, it is highly recommended to use penalty parame-

ter C which helps in ignoring the outlying points and may improve the generalization ca-

pacity of the final model significantly. The example below shows how an increase in an in-

sensitivity zone ε has smoothing effects on modeling highly noise polluted data. Increase 

in ε means a reduction in requirements on the accuracy of approximation. It decreases the 

number of SVs leading to higher data compression too.  
 

Example: Construct an SV machine for modeling 31 data pairs. The underlying function 

(unknown to the SVM) is f(x) = x
2
sin(x)) and it is corrupted by 25% of normally distrib-

uted noise with a zero mean. Analyze the influence of an insensitivity zone ε (ε  = 1, and ε  

= 0.75) on modeling quality and on a compression of data, meaning on the number of SVs.  

 Two solutions are shown in Fig. 2 below. The approximation function (a thick solid red 

line) is created by 9 and 18 weighted Gaussian basis functions for ε = 1 and ε = 0.75 re-

spectively. These supporting Gaussian functions are not shown in the figure. However, the 

way how the learning algorithm selects SVs is an interesting property of support vector 

machines and in Fig 3 we also present the supporting Gaussians. 

Note that the selected Gaussians lie in the dynamic area of the function in Fig 3. Here, 

these areas are close to both the left hand and the right hand boundary. In the middle, the 

original function is pretty flat and there is no need to cover this part by supporting Gaus-

sians. The learning algorithm realizes this fact and simply, it does not select any training 

data point in this area as a support vector. Note also that the Gaussians are not weighted in 

Fig 3, and they all have the peak value of 1. The standard deviation of Gaussians is chosen 
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in order to see Gaussian supporting functions better. Here, in Fig 3, σ = 0.6. Such a choice 

is due the fact that for the larger σ values the basis functions are rather flat and the support-

ing functions are covering the whole domain as the broad umbrellas. For very big vari-

ances one can’t distinguish them visually. Hence, one can’t see the true, bell shaped, basis 

functions for the large variances. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The influence of an insensitivity zone ε on the model performance. A nonlinear SVM cre-

ates a regression function f with Gaussian kernels and models a highly polluted (25% noise) function 

x2sin(x) (dotted). 31 training data points (plus signs) are used. Left: ε = 1; 9 SVs are chosen (encir-

cled plus signs). Right: ε = 0.75; the 18 chosen SVs produced a better approximation to noisy data 

and, consequently, there is the tendency of overfitting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Regression function f created as the sum of 8 weighted Gaussian kernels. A standard devia-

tion of Gaussian bells σ = 0.6. Original function (dashed thick line) is x2sin(x) and it is corrupted 

by . 25% noise. 31 training data points are shown as plus signs. Data points selected as the SVs are 

encircled. The 8 selected supporting Gaussian functions are centered at these data points.
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2 Active Set Method for Solving QP Based SVMs’ Learning4 

In both the classification SVMs and the regression ones the learning problem boils down to 

solving QP problem subject to the so-called ‘box’-constraints and to the equality constraint 

in the case that a model with a bias term b is used. The size of the QP’s Hessian matrix H 

and its density (the sparser the better for solving the QP problem) define the feasibility of 

the solution. Unfortunately, in SVMs training, Hessian H is always (extremely) dense 

(meaning ill-conditioned) and it scales with the number of data N. Thus, the SV training 

works almost perfectly for not too large training data set. However, when the number of 

data points is large (say N > 2,000) the QP problem becomes extremely difficult to solve 

with standard QP solvers and methods. For example, a classification training set of 50,000 

examples amounts to a Hessian matrix H with 2.5*10
9
 (2.5 billion) elements. Using an 8-

byte floating-point representation we need 20,000 Megabytes = 20 Gigabytes of memory 

(Osuna et al, 1997). This cannot be easily fit into memory of present standard computers, 

and this is the single basic disadvantage of the SVM method. There are four basic ap-

proaches that resolve the QP for large data sets. Vapnik in (Vapnik, 1995) proposed the 

chunking method that is the decomposition approach falling into the class of active set ap-

proaches. Another decomposition algorithm is suggested in (Osuna et al, 1997). The se-

quential minimal optimization (SMO) algorithm (Platt, 1997) is of different character and 

it seems to be very popular in SVM learning. The most recent Huang and Kecman’s Itera-

tive Single Data Algorithm (ISDA) software seems to be the fastest one and very efficient 

for huge data sets (Kecman, Huang and Vogt, 2005; Huang, Kecman and Kopriva, 2006). 

SMO and ISDA belong to the so-called working set algorithms. A systematic exposition of 

these various techniques is not given here, as all four would require a lot of space.  

 Vogt and Kecman in (Vogt & Kecman 2004, 2005) present and discuss the application 

of an active set algorithm in solving small to medium sized QP problems. The method also 

works for large data sets and very ill-conditioned matrix H setting, providing that the num-

ber of SVs is not too high a percentage of the training data used. For such data sets, and 

when the high precision is required, the active set approach in solving QP problems is su-

perior to other approaches (notably the interior point methods, and working set ones SMO 

and ISDA algorithms). (Vogt and Kecman, 2005) can be downloaded from 

http://www.support-vector.ws). Active-set algorithm’s suitability is due to the fact that they 

need O(Nf 
2
 + N) memory where Nf  is the number of free (unbounded, |α|i < C) SVs. Nf  is 

typically much smaller than the number of the data N, and it dominates the memory con-

sumption for large data sets due to its quadratic dependence. 

 The basics of active set method and its comparisons with the SMO based algorithms 

are given in the references above where the detailed derivation of the active set is pre-

                                                           
4 This part on active set method for solving SVMs QP problem can also be skipped. It talks about the 

motives and inspirations that led to developing an AS-LS algorithm which will be introduced in 

section 3, page 15. However, there is a deeper connection between the active set solution of the 

SVMs QP problem, and AS-LS which can be found at the bottom of page 34. 
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sented for both classification and regression problems without the bias term b and with it. 

In addition, all the details of the implementation by using Cholesky decomposition are pre-

sented in 2005 reference. Below, just the basic idea of an active set algorithm for SVMs is 

presented and later transformed into solving regression tasks by active set least squares 

method.  

 Active set algorithms are the classical solvers for QP problems. They are known to be 

robust, but they require more memory than working set algorithms. The first active sets al-

gorithms utilized for training the SVMs in an almost identical way for classification and 

regression are derived in (Vogt & Kecman 2004). The general idea is to find the active set 

A, i.e., those inequality constraints that are fulfilled with equality. If the set of active sup-

port vectors A is known, the Karush-Kuhn-Tucker (KKT) conditions reduce to solving 

simple system of linear equations which leads to the solution of the QP problem. Thus, ac-

tive set algorithm is an iterative procedure where in each iteration step a single SV, the 

worst KKT violator, is added to the active set. In the beginning of computation A is un-

known and it must be constructed iteratively by adding and removing constraints and test-

ing if the solution remains feasible.  
 

The construction of A starts with an initial active set A
0
 containing the indices of the 

bounded variables (lying on the boundary of the feasible region) whereas those in F
0
 = 

{1, . . . , N}\ A
0
 are free (lying in the interior of the feasible region). Then the following 

steps are performed repeatedly for k = 1, 2, …: 
 

S1. Solve the KKT system for all variables in F
k
. 

S2. If the solution is feasible, find the variable in A
k
 that violates the KKT conditions most, 

move it to F
k
, then go to S1. 

S3. Otherwise find an intermediate value between old and new solution lying on the border 

of the feasible region, move one bounded variable from F
k
 to A

k
, then go to S1.  

 

The intermediate solution in step S3 is computed by affine scaling as 1(1 )k k kη η −= + −a a a  

with maximal η∈ [0, 1] , where ka is the solution of the linear system in step S1, i.e., the 

new iterate ka  lies on the connecting line of 1k −a  and ka .  The optimum is found if during 

step S2 no violating variable is left in A
k
. See in (Vogt and Kecman, 2005) for all the de-

tails. 
 

Active set learning algorithm for the regression problems is to solve the following system 

of equations in each S1 step, 
 

k k k=H a c  (18) 

where 

*

*
 for 

k k k

i i i k k

k

ij ij

a
i F F

h K

α α= −
∈ ∪

=
 (19) 
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*
*

  for  

  for  k k
C C

k

k k

i i j ij k
j A A

i F
c y a K

i F

ε

ε∈ ∪

− ∈
= − +

∈
∑  

Note that in the active set method one uses variables *

i i i
a α α= −  and just the size of the 

matrix H is a half of the one in classic SVMs regression setting. Sets * and k k

C C
A A  contain 

all the indices of the bounded SVs, meaning the ones for which *,k k

i i
C Cα α= = . Also 

note that in the first step (k = 1), the worst violating data is chosen, and then k increases to 

2, 3, 4, ….,  and so on. Thus, in each step there is one more equation to solve. Step S2 of 

the algorithm calculates 

*

0 0*
 for 

k k

i i k k

k k

i i

E
i A A

E

λ ε

λ ε

= +
∈ ∪

= −
 

 

(20a) 

and 

*

*
 for 

k k

i i k k

C Ck k

i i

E
i A A

E

µ ε

µ ε

= − −
∈ ∪

= − +
 

 

(20b) 

where ( )
i i i

E f y= −x  denotes the prediction error. The multipliers λi and µi are checked 

for positiveness with precision τ, and the variable with the most negative multiplier is 

transferred to F
k
 or F*

k
. The algorithm above is valid for positive definite kernels when the 

model does not have bias term. In the case of bias term there is slightly change of equation 

(18) only. Graph in Fig 4 below shows the active set steps more clearly. 

 An implementation is as follows: The most memory required and the biggest CPU time 

consuming part is solving system of equations (18). Since all the algorithms assume posi-

tive definite kernel functions, the kernel matrix H has a Cholesky decomposition H = R
T
R, 

where R is an upper triangular matrix. For a fixed bias term, the solution of the linear sys-

tem in step S1 is then found by simple back-substitution. For variable bias term, the block-

algorithm as described in (Vogt and Kecman, 2005) is used. The use of Cholesky decom-

position speeds up the calculation a lot. There are many details to care about during the 

implementation while adding to and removing from the variables of an existing Cholesky 

decomposition. Also, a clever strategy should be used for implementing shrinking heuris-

tics and for cashing kernel values. (See the reference above). 

 Before introducing active set least squares algorithm for regression we will point out 

basic findings about the active set method for training SVMs. Experimental results show 

that active-set methods are advantageous 
 

  •  for ‘medium’ sized data sets, 

  •  when the number of support vectors is small, 

  •  when the fraction of bounded variables is small, 

  •  when high precision is needed, 

  •  when the problem is ill-conditioned. 
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Figure 4 Flow chart of an active-set algorithm and affine scaling of the non-feasible solution (M. 

Vogt’s graph, 2006) 

In the rest of the report, the active set least squares algorithm will be introduced by using 

the same approach in selecting worse violating data point as the active set method for 

training the SVMs. The worse violating data point is the one where there is the biggest de-

viation of the measured target values from the actual approximating function in the k-th it-

erative step. However, weight vector at the step k + 1 wk + 1 will be calculated differently. 

Next, the Householder reflections based QR factorization method in an updating form will 

be presented ensuring accurate and fast method for solving least squares problems arising 

within the AS-LS. This is the tool proposed here for calculating wk + 1. Then, the AS-LS al-

gorithm for constrained values of the weights will be developed and finally, the compari-

sons with the SVMs on two standard regression benchmark problems will be shown. 
 

Note that the proposed AS-LS algorithm is relaxing many requirements present in SVMs. 

First, the basis functions don’t have to be strictly positive definite kernels. Any basis func-

tions ensuring full rank of matrix H will do. Second, basis function don’t have to be asso-

ciated with the measured training inputs. Third, and this may eventually be the strongest 

point in the future, more than a single basis function can be associated with each training 

data point (e.g., several Gaussian hyperbells with different widths may be placed at a sin-

gle data points). The last opportunity will only cause slower learning (with a decrease in a 

speed being proportional to the number of basis functions used at a single data points) of-

fering at the same time possibly huge improvements in modeling performance (higher ac-

curacy, less SVs, higher accuracy). 

Initialization 
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STOP 
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a2 

affine scaling 



3 Active Set Least Squares (AS-LS) Regression     15 

3 Active Set Least Squares (AS-LS) Regression 

 

The basic feature of the active set method for SVMs is that in each iteration step k, the val-

ues of dual variables *,k k

i i
α α  are solutions of a linear system for k support vector variables 

by using only the selected k variables. In other words, if in some iteration step the training 

data (regressors, support vectors) m, n, o, p and q are selected the matrix H will be a square 

(5, 5) matrix formed of columns and rows m, n, o, p and q, and the current approximating 

function fa(x) will be created only by data points m, n, o, p and q. The approximator fa(x) 

accommodates desired values ym, n, o, p, q on the ε-tube. The rest of training data does not 

contribute to the forming of current approximating function fa(x) at all. Thus, in-between 

the data points m, n, o, p and q the function fa(x) may behave (and it usually does) as ‘wild’ 

and as ‘hairy’ as needed to suit only the five outputs yi (i = m, n, o, p, q) on the ε-tube. The 

unselected data points (non-regressing data, i.e., non-SVs at the step k) do not have any 

(primarily smoothing) influence on fa(x). Thus, at the end of a learning, the final approxi-

mating function fa(x) will be the one created without any influence of the great portion of 

the training data points i.e., fa(x) is ignoring them as long as they are fitted within the ε-

tube in the case of the hard regression. As for the soft regression, some data points will be 

allowed to be left out of the tube and their corresponding dual variables 
i

α  and *

i
α  will be 

bounded at the value of the penalty parameter C. 
 

 

The ‘wild’ behavior of fa(x) is illustrated by an approximation of a ‘dynamic’ 1-

dimensional function in Figs 5 where the first few iterations and two final ones are shown. 

Left column shows a progression of approximations by an active set SVMs (thick solid red 

line with the ε-tube shown, ε = 0.75), while the right one shows the approximations ob-

tained by the active set least squares method (blue thick curve). In all simulations data was 

spoiled by 10% Gaussian noise having zero mean. The width of Gaussians was 9 times an 

average distance between the data points. Note that the final AS-LS model is sparser (29 

SVs only) than a classic SVM’s one (45 SVs). 
 

 

Note also that in the case of an active set SVM (left column graphs) the sum of errors 

squares over all the training data generally decreases but in a wild, non-smooth, manner. 

Therefore, it can’t be used as reliable stopping criterion. This is not the case with the AS-

LS (right column graphs) where the sum of error squares continuously decreases by an in-

crease in a number of selected SVs (basis functions, hidden layer neurons, regressors). 

Hence, in an addition to the fitting of all the training data inside the ε-tube sum of errors 

squares over all the training data can, and it will, be used as a stopping criterion for the 

AS-LS algorithm. 
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Figure 5 Progression of approximations: left column - by active set SVMs (red solid curve with the 

ε-tube shown), and right column - by active set least squares method (blue solid curve). Green stars * 

are 100 training data, blue dashed curve is true function, and current SVs are encircled data points. 

Figure continues on the next page. 
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Figure 5 (continued) Progression of approximations: left column - by active set SVMs  (red solid 

curve with the ε-tube shown), and right column - by active set least squares method (blue solid 

curve). Green stars * are 100 training data, blue dashed curve is true function, and current SVs are 

encircled data points. Figure continues on the next page. 
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Figure 5 (continued) Progression of approximations: left column - by active set SVMs (red solid 

curve with the ε-tube shown), and right column - by active set least squares method (blue solid 

curve). Green stars * are 100 training data, blue dashed curve is true function, and current SVs are 

encircled data points. 

 

The non-smooth behavior of the approximating functions shown in the left columns of the 

graphs in Fig 5 led naturally to the idea of changing the active set method for SVMs so that 

instead of solving the system of k linear equations in k unknowns (18) originating from k 

selected regressors (i.e., SVs), one solves an overdetermined system of N equations in k 

unknowns in the least squares sense as given below  
 

k k ≅H w y  (21) 

 

where H
k
 is an (N, k) matrix and y is the complete desired (N, 1) vector. Thus, if in step k 

the training data (regressors, support vectors) m, n, o, p and q are selected, the matrix H
k
 

will be a rectangular (N, 5) matrix formed of columns obtained by kernels m, n, o, p and q 

but now, the kernels (basis functions) will be calculated for all the N available training data 

points. After solving (21) for w
k
, the approximating function fa(x) at each step k equals 

 

fa(x)
k
 = H

k
w

k
 (22) 

 

Having fa(x)
k
 one finds the worst violating data point xwv from  
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� ( )max ( )

wv

k

aArg abs f−
x

y x . 
(23) 

 

xwv is then added to the set of supporting vectors F for solving the system 1 1k k+ + =H w y  in 

the next iteration step. Thus, in the iteration step k + 1 matrix H
k+1

 is an (N, 6) matrix, and 

6 weights for 6 basis functions have to be found. This algorithm is called the active set 

least squares (AS-LS) method. AS-LS works with or without bias term b. In the case that 

one wants to use the bias term b the first system to be solved in a first step (k = 1) is  
 

 

1 1 1w w= ≅H 1 y  (24) 

 

 

where 1 = [1  1  1 … 1]
T
 i.e., it is an (N, 1) vector of ones. It is obvious that the first ap-

proximating function fa(x)
1
 will model the constant mean value of the data. 

 

3.1 Implementation of the Active Set Least Squares Algorithm 

 

One of the basic requirements of any new machine learning (data mining) algorithm is to 

be able to handle huge amount of data and to do the calculation as fast as possible. This 

naturally concerns the AS-LS algorithm which is aimed at ‘medium’ sized data and the 

‘medium’ is defined as the size at which the matrix Hfinal can still be stored in the memory 

of the computer, where the matrix Hfinal is an (N, NSV) size matrix. Actually, the storing can 

also take place at hard drive and then the definition ‘medium’ just increases. However, 

reaching hard drive at each iteration step may be time consuming, and hard drive damag-

ing too, so we stick to the previous definition. Thus, the task to solve now is to develop 

fast updating algorithm for solving an increasing in the size series of least squares prob-

lems. There are many algorithms that can be used for solving least squares problems 

(forming normal system of equations, application of the pseudo-inversion, using Sherman-

Morrison-Woodbury formula, performing LU decomposition, doing an SVD factorization 

and the list goes on. For an extensive analysis of the properties of various LS algorithms 

the reader is referred to (Mrosek, 2006). However, for many reasons (foremost due to its 

impeccable numerical properties) the most promising approach is to use the QR decompo-

sition as given below 

 

,
k k

k k k kT

k k
or

   
= =   
   

R R
Q H H Q

0 0
 

 

 

in an iterative updating fashion.  
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3.1.1 Basics of Orthogonal Transformation  

Decomposing the matrix H (N, k) into an (N, N) orthogonal matrix Q (QQ
T
 = Q

T
Q = I) 

and an upper triangular matrix R (N, k) avoids all the numerical difficulties while using the 

normal system of equations. Thus, the QR factorization of a matrix is one of the most pow-

erful factorization and the one realized by Householder reflections (HRs) is numerically 

impeccable method. This is why the MATLAB’s backslash operator uses the Householder 

reflections. (The other three methods for the QR decomposition are the Gram-Schmidt or-

thogonalization, modified Gram-Schmidt orthogonalization and an application of Givens 

rotations). In addition to its great numerical properties, the QR algorithm based on the HRs 

can be easily transformed into an efficient iterative updating routine which is of particular 

interest for AS-LS approach in regression. In solving LS problems, a nice property of the 

orthogonal matrix that it preserves the Euclidean norm of the vector v is used. Namely, the 

following is valid, 
 

( ) ( )
2 2

2 2

T T T T= = = =Qv Qv Qv v Q Qv v v v , (25) 

 

and this will be exploited in sequel. Additionally, there is a benefit of having the upper tri-

angular matrix R due to its usability in solving an overdetermined linear system of equa-

tions by a back-substitution. Namely, in solving  
 

1

2

  
≅   

   

vR
w

v0
, (26) 

 

it turns out that the error (residual) is 
 

2 2 2

1 22 2 2
= − +e v Rw v , (27) 

 

and, because the regular square system of equations Rw = v1 can be exactly solved, the 

minimal squared error equals 
2

2 2
v . Thus, in each iteration step, the QR factorization 

factorizes the (N, k) matrix H
k
 into the product of an (N, N) orthogonal matrix Q

T
 and the 

matrix [R
T
 0

T
]

T
 where R is an (k, k) upper triangular matrix as follows 

 

k

k kT
 

=  
 

R
H Q

0
, (28) 

 

Thus, the overdetermined LS problem (21) k k ≅H w y  is, after multiplying by Q, trans-

formed into the triangular LS task as shown below (indexing by k is avoided for the sake 

of notation’s simplicity ) 
 

1

2

  
= ≅ =   
   

vR
QHw w Qy

v0
. (29) 

 

The last expression has the same solution as ≅Hw y  because multiplying both sides of a 

least-squares equation by an orthogonal matrix Q doesn’t change the solution. This follows 

from the fact in (25) which shows that the orthogonal transformation preserves the Euclid-

ean norm. Namely, the lines shown below 
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2 2

2 2 2 2 2

1 2 22 2 2 2 2

2 2

T    
= − = − = − = − + =   

   

R R
e y Hw y Q w Qy w v Rw v v

0 0
, (30) 

 

prove that the norm of the solution error doesn’t change after application of QR transfor-

mation.  

3.1.2 An Iterative Update of the QR Decomposition by Householder Reflection 

There are many ways how one can apply QR factorization while solving LS tasks. In 

(Mrosek, 2006) the following MATLAB’s implementation have been investigated - stan-

dard QR factorization, transpose QR factorization, economy size QR factorization, column 

insert QR factorization, column append QR factorization and QR factorization without 

computing Q matrix (limited to sparse matrices). The column append QR factorization is 

not a standard MATLAB routine. It is an Mrosek’s MATLAB implementation of the algo-

rithms from Craig Lucas’ PhD thesis (Lucas, 2004). (There are few more routines based on 

Givens rotations presented in the thesis). As shown in (Mrosek, 2006) the MATLAB’s in-

sert column and append one are the fastest routines for solving LS problems. In this section 

we introduce an even faster QR implementation particularly suited for an iterative (ap-

pending columns) procedure as required in AS-LS, which was used for the experiments 

here. This is an iterative method for solving a series of equations (21) based upon the 

Householder reflections as introduced in (Moler, 2004) and implemented here and in 

(Mrosek, 2006). This novel implementation of the Householder algorithm avoids the cal-

culation of matrix Q at any stage of the solution, and it is capable of solving the linear least 

squares problem arising from the AS-LS algorithm faster than all the other alternative al-

gorithms for solving LS problems.  

 

To compute a QR factorization of matrix H, HRs are performed in order to annihilate sub-

diagonal entries of each successive column of H. This is done by a sequence of transfor-

mations applied to the columns h of the matrix H to produce the matrix R, where in each 

step i a transformation matrix Ti is formed as follows 
 

2
T

i i

i T

i i

= −
v v

T I
v v

. (31) 

 

In order to transform the vector h, the vector v used in (31) is formed as shown below 
 

2

2
,α α= − = ±v h e h , (32) 

 

and the sign of α is chosen to avoid the cancellation of i-th entry of the transformed col-

umn h. Suppose we want to apply an HR to the vector h = [-1  2  3]
T
. First we form vector  
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1 1 1 4.7417

2 0 2 0 , 3.7417, 2 ,

3 0 3 0 3

α

α α

− − −         
         = − = − = = =         
                  

v h v  

 

where the sign for α is chosen positive because v1 is a negative number. The matrix T is 
 

-0.2673    0.5345    0.8018 3.7417

2  0.5345    0.7745   -0.3382 0

 0.8018   -0.3382    0.4927 0

T

T

   
   = − = ⇒ =   
      

vv
T I Th

v v
 

 

If one wants to transform solving of the LS problem Hw = y into solving the system of 

equations using the upper triangular matrix R, the matrix H should be transformed by ap-

plying a sequence of HRs to H such that QH = R or H = Q
T
R. For a matrix H given as 

 

1 2 3

1 3 3

1 2 3

1 1 2

1 1 2

1 1 2

 
 
 
 

=  
 
 
 
  

H  

 

this is performed by starting with the first column (note that the norm 

2

1 2
[1 1 1 1 1 1] 2.4495T= =h ), creating the vector v1, making the reflection ma-

trix T1, 
 

1 1

1 2.4495 3.4495 -0.4082   -0.4082   -0.4082   -0.4082   -0.4082   -0.4082

1 0 1 -0.4082    0.8816   -0.1184   -0.1184   -0.11

1 0 1
,

1 0 1

1 0 1

1 0 1

−     
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     
     
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     
     
          

v T

84   -0.1184

-0.4082   -0.1184    0.8816   -0.1184   -0.1184   -0.1184

-0.4082   -0.1184   -0.1184    0.8816   -0.1184   -0.1184

-0.4082   -0.1184   -0.1184   -0.1184    0.8816   -0.1184

-0.4082   -0.1184   -0.1184   -0.1184   -0.1184    0.8816

 
 
 
 
 
 
 
 
  

 

and multiplying H by T from left as below 
 

1

-2.4495   -4.0825   -6.1237

 0.0000    1.2367    0.3551

 0.0000    0.2367    0.3551

 0.0000   -0.7633   -0.6449

 0.0000   -0.7633   -0.6449

 0.0000   -0.7633   -0.6449

 
 
 
 

=  
 
 
 
  

T H . 
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Next, the transformation matrix T2 is calculated by first forming vector v2 from the matrix 

T2H above as follows, 
 

2

2

2

         0     0 0    0

    1.2367 1.2367 1.8257 3.0624

    0.2367 0.2367 0 0.236
1.8257,

   -0.7633 -0.7633 0

   -0.7633 -0.7633 0

   -0.7633 -0.7633 0
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7
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-0.7633

-0.7633

-0.7633

1         0         0         0         0         0            0

0   -0.6774   -0.1296    0.4181    0.4181    0.4181
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 
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23    0.0323

0    0.4181    0.0323    0.8958   -0.1042   -0.1042

0    0.4181    0.0323   -0.1042    0.8958   -0.1042

0    0.4181    0.0323   -0.1042   -0.1042    0.8958

 
 
 
 
 
 
 
 
  

 

 

Notice the way how the vector v2 is formed from the 2
nd

 column of a matrix T1H, above 

(v2(1) was set to 0) and follow the same way in forming the vector v3 from the 3
rd

 column 

of the matrix T2T1H below 

 

2 1

-2.4495  -4.0825  -6.1237

0.0000   -1.8257   -1.0954

0.0000    0.0000    0.2429
.

0.0000    0.0000   -0.2834
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Now we’ll use the slightly changed 3
rd

 column of T2T1H in forming the vector v3 namely, 

this one [0  0  0.2429  -0.2834  -0.2834  -0.2834]
T
 is used in calculation of v3 below 

 

2

3

2

    0     0 0     0

    0     0 0     0
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3

    1.0000         0         0         0         0         0

         0    1.0000         0         0         0         0

         0         0   -0.4435    0.5175    0.5175    0.5175

         0       
=T

  0    0.5175    0.8145   -0.1855   -0.1855

         0         0    0.5175   -0.1855    0.8145   -0.1855

         0         0    0.5175   -0.1855   -0.1855    0.8145
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 
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 
 
 
  

 

 

The sequence of Householder transformations produced the following QR factorization of 

matrix H 
 

3 2 1

 
=  
 

R
T T T H

0
 

 

Note two interesting facts; first a product of transformation matrices Ti equals the orthogo-

nal matrix Q, 
 

3 2 1

   -0.4082   -0.4082   -0.4082   -0.4082   -0.4082   -0.4082

   -0.1826   -0.7303   -0.1826    0.3651    0.3651    0.3651

   -0.5477    0.5477   -0.5477    0.1826    0.1826    0.1826

   -0.4082 
= =Q T T T

   0.0000    0.4082    0.6667   -0.3333   -0.3333

   -0.4082    0.0000    0.4082   -0.3333    0.6667   -0.3333

   -0.4082    0.0000    0.4082   -0.3333   -0.3333    0.6667
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 
 
 
 
 
 
 
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and second, the explicit form of Q was not needed for computing the triangular matrix R.  

 

This fact will be used in implementing iterative updating algorithm for AS-LS increasing 

in this way the speed of computation as well as reducing the memory space for not saving 

the matrix Q at all. The algorithm to implement starts with the first LS equation to solve 
 

1 1 1

1wv
= ≅H w h w y  (33) 

 

After finding the first transformation matrix T1 HR is performed and one gets 
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 (34) 

 

Having the first weight w
1
 calculated from (34) the approximating function fa(x)

1
 = h

1
w

1
 is 

computed and the worst violator is found. Now, the column vector corresponding to the 
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worst violator is appended to the previous matrix H
1
, new matrix T

2
 is to be found and the 

process repeats itself until some stopping criterion is met.  
 

The stopping criterion is either fitting all the data within the prescribed ε-tube, or the up-

dating and increasing the size (number of basis functions, regressors, SVs) of the model 

goes as long as the sum of error squares decreases. It is easy to show that the sum of error 

squares for an AS-LS algorithm can’t increase at any point. This is contrary to the behavior 

of an error function in SVMs’ learning when the change of cost function can be fairly wild. 

Note also that the proposed AS-LS algorithm does not delete already selected support vec-

tors from the active set. Once SVs is chosen, means a selection ‘for life’. Also note that 

adding new regressors typically deteriorates the condition number of matrix H, and if the 

‘fitting within the tube’ is not met, the training goes until the condition of the matrix H
k
 is 

so bad that the error starts increasing due to the loss of the rank of some sub-matrices 

within the routine. 
 

The whole art and science of solving AS-LS learning problems focuses now on a sophisti-

cated code for implementing an iterative sequence of HRs presented earlier while avoiding 

calculation of a Q matrix and by saving as much of computer memory as possible, having 

in mind that the algorithm should be able to cope with huge number of training data. 

Within this report and jointly with (Mrosek, 2006) two codes for an orthogonalization of 

the LS problem arising in AS-LS method given in appendix have been developed showing 

the better performance (great accuracy, faster algorithm and lower requirements on a 

memory) than all the other QR factorization implementations. These two codes are hhco-

lappend.m and backsubs.m. Note that in each iteration step both routines are called for a 

calculation of the weight vector w, followed by finding the approximation function fa, 

picking up the worst violator xwv, adding it to the set of selected basis functions, and run-

ning the new iteration step. (How such an updating works on a 1-dimensional problem in 

approximating a decreasing sinus function is shown in the Appendix). The final LS prob-

lem to solve at the point of stopping in the step K is the one with (N, K) matrix H, and the 

(K, 1) weight vector w obtained from the least squares solution of the equation Hw = y. As 

it can readily be seen, when the number of data goes into thousands one better hopes the 

number of supporting vectors K be just a small fraction of the training data set. Luckily, at 

many instances this is often the case. However, if it is not that way one should either take 

into account slow learning process or one must switch to the working set kinds of algo-

rithms for training SVMs (ISDA or SMO for example). 
 

The AS-LS has shown very good results on some renown benchmark, and some tough al-

though toy in size, problems. This will be shown shortly. Now, however, we’ll extend the 

AS-LS learning algorithm to the one with a weight constraints.  
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3.2 An Active Set Least Squares with Weights Constraints – Bounded LS Problem 

As it is very well known, solving LS problems when the matrix H is not well conditioned 

(which is often the case in machine learning) results in huge values of the weight vector. 

This is a consequence of the fact that with an increase of the conditional number the value 

of the determinant of the matrix H approaches zero, and it is this value which is in the de-

nominator while calculating the vector w whenever one uses matrix inversions. Here, 

while applying HRs one doesn’t use the inverse at any point but the effects of bad condi-

tioning are present and they lead to high weights’ values through the very low values of the 

matrix R too. For badly conditioned matrices the upper triangular matrix R is closing to 

the singular matrix. At the same time, constraining the weights used to be and still is a 

standard and traditional method in avoiding data overfitting and basically bad performance 

of the model associated with it. This idea has been lifted particularly high in the learning 

algorithms for SVMs where (initially the only, and today) the important part of the cost 

function is a norm of the weight vector w which must be as small as possible. Constraining 

the weights values is both a right and good step and it is one of the basic foundations of the 

statistical learning theory (Vapnik, 1995, 1998). Therefore, after the experiments with the 

AS-LS algorithm have often resulted with the huge weights’ values, the natural extension 

of the AS-LS is to enable learning with limiting the weights. A novel AS-LS algorithm 

with weights constraints will be presented in this section.  

 Before presenting the algorithms developed and used within this report it has to be 

mentioned that few more routines and approaches have been tested for solving the 

bounded least squares (BLS) problem (35) posed below. They have been performing fine 

on toy problems but all of them failed on a tougher benchmark problem (e.g., on the dy-

namic problem of a Mackey-Glass time series prediction). The first attempt was exploiting 

the MATLAB’s lsqlin routine. In addition, the sparse least squares Matlab toolboxes 

(SBLS and SBLS2) developed within the PhD thesis presented in (Adler, 2000) have also 

been used. None of the algorithms has shown good performance beyond the ‘toy’ 1-D 

problems. As for SBLS and SBLS2 routines developed for sparse problems, it was hard to 

believe that they may perform well on problems involving extremely dense matrices. This 

is why another, more efficient, approach has been taken for solving the constrained AS-LS 

task below. In section 4 it is shown that such an approach for the bounded AS-LS algo-

rithm competes favorably with the SVMs algorithm. 

 The Active Set Bounded Least Squares (AS-BLS) problem to solve now is - in each it-

eration step k find w
k
 of the LS problem 

 

k k ≅H w y , (35a) 

 

such that 
 

, 1,
i

C w C i k− ≤ ≤ = . (35b) 
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This is resolved by applying the series of algorithms introduced in (Lawson, Hanson, 

1995) as follows. First, by an introduction of a (2k, k) matrix K = [I  -I]
T
 and a (2k, 1) vec-

tor c = [-C   -C  . . . -C]
T
 problem (35) is transformed into the least squares problem with 

linear inequality constraints (LSI) which is posed as - minimize 
 

−
w

Hw y , (36a) 

 

subject to 
 

≥Kw c . (36b) 
 

The LSI problem is transformed into the least distance programming (LDP) task which, 

finally, uses the non-negative least squares (NNLS) algorithm as the solving tool. The 

mentioned sequence of routines is given in Fig. 6 graphically.  

 

 

 

 

 

 

Figure 6 The sequence of algorithms for solving Active Set Bounded Least Squares problems 

Here, in creating the final efficient sequence of three algorithms the Rasmus Bro’s imple-

mentations of LSI and LDP (Rasmus, 2006) were combined with Uriel Roque’s (Roque, 

2006) block pivoting algorithm from (Portugal et al, 1994) which may update more than 

one element at the same time and is more robust and faster than other NNLS algorithms 

tried within the AS-BLS loop in Fig 6. Here, the Roque’s blocknnls.m was slightly adapted 

in order to robustly handle dense badly conditioned matrices appearing in AS-BLS regres-

sion algorithm. Basically, the breaking line of the code (when certain sub-matrices in-

volved in solving NNLS lose their rank) has been introduced. This simple addition closed 

the loop in Fig 6 and made the whole AS-BLS a robust algorithm.  

 

The most CPU time consuming part of the algorithm is solving the NNLS problem. This is 

particularly critical when the data sets is big (several thousands of training data) and the 

character of the problem is such that good model needs a lot of supporting data points (re-

gressors, SVs, basis functions) in creating final approximation function. In the experimen-

tal part of the report (performed in MATLAB) many algorithms for solving NNLS have 

been tried and most of them failed on Mackey-Glass time series prediction due to condi-

tioning of underlying matrices. (However, all of them perform nicely for smaller and well 

conditioned problems). Conditioning is related to the parameters of the kernels used. It ba-

sically increases with higher overlapping of Gaussian radial basis kernels (‘big’ width pa-

rameter σ  of Gaussian ‘hyper-bells’) as well as with the increase of the order of the poly-

 
LSI 

 
LDP 

 
NNLS 

H, y, K, c        KKR, c-KKR*y1         E = [K ’; c’],  f                u 

w          x=-r/rnn , r = Eu - f                 u        
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nomial kernels. The simulations have been executed by using MATLAB’s lsqnonneg.m as 

well as Rasmus’ fnnls.m, and Roque’s three different solvers for NNLS problem – Predic-

tor-Corrector solver pcnnls.m, Active Set solver activeset.m, and Newton’s solver new-

ton.m. Note that solving regression tasks in high dimensional spaces by kernels usually 

leads to extremely badly conditioning of matrices involved and this is why none of the rou-

tines performed well for various reason (one is aimed at squares matrices only, another one 

is prone to cycling of the algorithm, yet another one looses the rank of some sub-matrices, 

or some are slow and just leading to the seemingly never ending convergence etc). How-

ever, the Roque’s blocknnls.m was good enough and helped in proving the soundness of 

the AS-LS approach. With our tiny adaptation it has displayed very good performance on 

many problems as well as high modelling capacity. 

 

In the next section, it will be shown that both unconstrained AS-LS and bounded AS-BLS 

algorithms successfully compete with SVMs in solving complex benchmark problem of 

predicting very difficult to forecast dynamic Mackey-Glass time series. 
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4 Comparisons of SVMs and AS-LS Regression 

Predicting nonlinear dynamic (chaotic) system such as Mackey-Glass time series (Lapedes 

and Farber, 1987; Majetic, 1995, Mukherjee et al., 1997, Müller et al, 1998, Shah, 1998) is 

a very difficult task but such a series forms a good test to investigate the capability and 

performance of machine learning techniques. Here, we will compare performances of AS-

LS and AS-BLS algorithms with the results obtained by SVMs. There are many examples 

of chaotic systems in nature including - chemical reactions, turbulence phenomena in flu-

ids, nonlinear vibrations, etc. Lapedes and Farber (1987) suggested and first used the 

Mackey-Glass time series as a good benchmark for neural networks learning algorithms 

since it has a simple definition but is still hard to predict. 

The Mackey-Glass equation is a non-linear differential delay equation (originally intro-

duced as a model of a blood cell regulation) given as 
 

( )
( )10

( )
1

ax tdx
bx t

dt x t

τ

τ

−
= −

+ −
 (37) 

 

with a = 0.2, b = 0.1 and delay τ = 17. For 1,000 time steps the Mackey-Glass time series 

without the noise is shown in Fig 7. 
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Figure 7 The Mackey-Glass chaotic time series with a = 0.2, b = 0.1 and  τ = 17 for 1,000 time steps 

The objective of the forecast is to use known previous values in the time series to predict 

the value at some point in the future. In SVMs based prediction a mapping of the historical 

values is described as the function 
 

x t P f x t x t x t x t m+ = − − −b g b g b g b g b gm r, , , ...,∆ ∆ ∆2  
(38) 

 

where P is a prediction time in future, ∆ is a time delay and m is an integer defining the 

embedded dimension of the problem d = m + 1. Embedded dimension defines the number 
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of terms used in the input vector i.e., it defines the dimensionality of the input vector. 

Here, we make one step prediction. Therefore, P = 1, time delay ∆ = 6, and the so-called 

embedded dimension is 6, meaning m = 5. Thus, the model uses the training data pairs (xi, 

yi, i= 1, N ), where xi is a 6-dimensional vector of the inputs composed of a present value 

of the Mackey-Glass (M-G) series x(t) and 5 delayed ones, and the output is the next value 

of the M-G series x(t + 1). The function f is a subject of training for the SVMs model 

which maps the input data onto the output space x(t + 1). In all the simulations the initial 

condition was x(t = 0) = 0.9. Also, in order to minimize the effect of the initial conditions 

and to reach the steady-state the first 200 elements of the series are discarded. 

 Here, the results are shown for three sizes of training data set. In all the experiments the 

length N of the training session and the test one was the same. The experiments have been 

performed for 250 pairs of the training and test data, 500 pairs and 1,000 ones. Thus, Fig 8 

shows the setting of all the experiments where N stands for 250, 500 and 1,000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 The setting of a training and testing phase for the Mackey-Glass time series. Three series of 

experiments have been done for N = 1,000, 500 and 250 data pairs 

The data shown in Figs 7 and 8 are noiseless. The true training data used here are polluted 

by a Gaussian noise with zero mean and various variances as well as with the uniform 

noise. Test was always executed by using N noiseless data enabling in this way measuring 

the models’ ability to approximate the true time series. As it can be seen in the results ta-

bles, several noise levels have been used. The noise ratio (NR) is calculated as follows 
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data
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= , (39) 

where the variances are calculated as 
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(40) 
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Four segments of the M-G series polluted with a noise of various levels are shown in Fig 9. 

The training data used were either one of the noisy samples shown. 

 

 

Figure 9 Four segments of Mackey-Glass time series polluted with Gaussian noise of various levels 

In the training phase, the training data pairs of the present and previous inputs at the step k 

and the next output ( ) [ ]( )1 6 12 18 24 30 1, ,k k k k k k k k kx x x x x x x x+ − − − − − +=x  are used in order 

to learn the mapping f(*). After the training, given some input vector x the model predicts 

next value just implementing the trained function as 
 

[ ]( )1 6 12 18 24 30
ˆ

k k k k k k kx f x x x x x x+ − − − − −= , (41) 

 

where the hat sign denotes the next estimated value of the time series. 

 The test is, however, carried out in a dynamic fashion meaning by feeding back the es-

timated values x̂  and, in a test mode, the following mapping at each iteration step is per-

formed 
 

[ ]( )1 6 12 18 24 30
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

k k k k k k kx f x x x x x x+ − − − − −= . (42) 

 

In the test phase the performance of each selected model is estimated for three different 

scenarios as in (Müller et al, 1998). The error is calculated for the one step prediction, for 

the 100 steps prediction and in the dynamic prediction mode over the whole sequence of N 

data.  

 The one step prediction is in fact static mapping where at no point estimated values x̂  

is fed back and thus, it doesn’t influence future predictions. The prediction starts with the 

initial state at k = 31, and at each iteration step the known (measured) test data are used to 

predict the next value only. This is done for all known input vectors in a test set. 

 It’s different for the 100 steps predicting scenario. Starting from the initial known input 

vector at k = 31, the 100 steps model feeds back the predicted outputs for the next 100 

steps. Then, the known 132
nd

 measured input vector composed of 6 known entries (not the 

estimated ones) is used and the next 100 steps are predicted, based upon the known initial 

states.  

 A true dynamic scenario (model) starts from the initial state k = 31 and feeds back the 

predicted outputs for the all N - 31 test data. 
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 The cost (error) functional E used is the root mean square error (RMSE) over all the 

predicted outputs for all three scenarios as follows 
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4.1 Performance of an Active Set Least Squares (AS-LS) - without Constraints 

The experimental part is aimed at finding good AS-LS based machine learning model or 

the SVM one, by picking the right design parameters. Here, in all the simulation the Gaus-

sian kernel is used and there are three design parameters for both AS-LS and SVMs. They 

are the penalty parameter C defining the maximal absolute weight value of the model, 

width of Gaussian basis functions σ and the size of the ε-tube defining desired closeness of 

the model to data points. (Note that picking C = ∞ and ε = 0 means that one wants to in-

terpolate the data points, which is usually bad idea because one typically wants to filter the 

noise out). For both models a series of runs for various values of the design parameters 

have been performed and the results are shown in Tables 2 – 7.  

Table 2 1,000 data Mackey-Glass series – RMSE Comparisons AS – LS vs. SVMs 

 1 step error 100 steps error dynamic error 

Noise NR % AS-LS SVM AS-LS SVM AS-LS SVM 

Normal 

0 

11 

22.15 

44.3 

0.0001 

0.0161 

0.0219 

0.0307 

0.0003 

0.0174 

0.0241 

0.0315 

0.0014 

0.0910 

0.1398 

0.1620 

0.0043 

0.1111 

0.1342 

0.1368 

0.0186 

0.1071 
0.1148 

0.2141 

0.0951 

0.1124 

0.1146 

0.1141 

Uniform 
6.2 

18.6 

0.0115 

0.0260 
0.0111 

0.0187 

0.1090 

0.1417 
0.0816 

0.1362 

0.1183 
0.1412 

0.1205 

0.1116 

Table 3 500 data Mackey-Glass series – RMSE Comparisons AS – LS vs. SVMs 

 1 step error 100 steps error dynamic error 

Noise NR % AS-LS SVM AS-LS SVM AS-LS SVM 

Normal 

0 

11 

22.15 

44.3 

0.0002 
0.0214 

0.0248 

0.0400 

0.0004 

0.0213 

0.0290 

0.0407 

0.0033 

0.0887 

0.1052 

0.1297 

0.0034 

0.1114 

0.1202 

0.1210 

0.0230 

0.1148 

0.1169 

0.1257 

0.0132 

0.0750 

0.1126 

0.1116 

Uniform 
6.2 

18.6 

0.0123 

0.0208 
0.0120 

0.0183 

0.0755 

0.1254 

0.0875 

0.1149 

0.1036 

0.1258 

0.1100 

0.1152 

Table 4 250 data Mackey-Glass series – RMSE Comparisons AS – LS vs. SVMs 

 1 step error 100 steps error dynamic error 

Noise NR % AS-LS SVM AS-LS SVM AS-LS SVM 

Normal 

0 

11 

22.15 

44.3 

0.0007 

0.0323 

0.0307 

0.0464 

0.0009 

0.0222 

0.2860 

0.0398 

0.0104 

0.0795 

0.0946 

0.1078 

0.0296 

0.0715 

0.0928 

0.0933 

0.0090 

0.0795 

0.0851 

0.0963 

0.0311 

0.0680 

0.0804 

0.0879 

Uniform 
6.2 

18.6 

0.0179 

0.0301 
0.0176 

0.0258 

0.1077 

0.1026 
0.0969 

0.0938 

0.0786 

0.0920 
0.0707 

0.0736 
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First three tables compare unconstrained (C = ∞) AS-LS models with the SVMs optimized 

over several penalty parameters C. Usually, and this is a typical LS method’s characteris-

tics, this leads to high values of the output layer weights. From Tables 2 – 4 few conclu-

sions can be drawn. First, there are three different models performances shown in the ta-

bles – static one (1-step prediction) and complete dynamic model, as well as one 

intermediate one (100 steps prediction). Thus, a model which is performing well on the 1-

step prediction doesn’t necessarily have to perform well on the 100-step prediction and/or 

on the dynamic model prediction. Second, both models perform similarly in terms of the 

RMSE on the test data. Third, unconstrained AS-LS has tiny advantages for more training 

data and Gaussian noise, while SVMs is a little better for smaller data sets and when the 

noise is uniformly distributed.  
 

However, such performances have been expected because SVMs basic claim is to be good 

on the tasks when the data sets are sparse and polluted by unspecified noise distribution. At 

the same time AS-LS has shown all the good characteristics of LS based solutions per-

forming well when there are plenty of data polluted by normal noise distribution. The 

strength of SVMs comes also from a constraining of the weights vector’s norm and it may 

be interesting to see whether the bounding of the weights works for AS-LS approach. As, 

it is shown in tables 5 - 7 it works indeed, and constraining the weights in the AS-BLS rou-

tine has shown better performances working within the true SVMs environment – meaning 

for sparse uniformly polluted data points. 

4.2 Performance of a Bounded Active Set Least Squares (AS-BLS) with Constraints  

Table 5 1,000 data Mackey-Glass series – RMSE Comparisons AS – BLS & AS-LS vs. SVMs 

 1 step error 100 steps error dynamic error 

Noise NR % AS-BLS AS-LS SVM AS-BLS AS-LS SVM AS-BLS AS-LS SVM 

normal 
22.15 

44.3 

0.0256 

0.0345 
0.0219 

0.0307 

0.0241 

0.0315 

0.1363 

0.1376 

0.1398 

0.1620 
0.1342 

0.1368 

0.1133 

0.1141 

0.1148 

0.2141 

0.1146 

0.1141 

uniform 
6.2 

18.6 

0.0116 

0.0220 

0.0115 

0.0260 

0.0111 

0.0187 

0.1151 

0.1376 

0.1090 

0.1417 

0.0816 

0.1362 

0.1059 

0.1157 

0.1183 

0.1412 

0.1205 

0.1116 

 

Table 6 500 data Mackey-Glass series – RMSE Comparisons AS – BLS & AS-LS vs. SVMs 

 1 step error 100 steps error dynamic error 

Noise NR % AS-BLS AS-LS SVM AS-BLS AS-LS SVM AS BLS AS-LS SVM 

normal 
22.15 

44.3 

0.0277 

0.0386 

0.0248 
0.0400 

0.0290 

0.0407 
0.0989 
0.1220 

0.1052 

0.1297 

0.1202 

0.1210 

0.1159 

0.1267 

0.1169 

0.1257 
0.1126 

0.1116 

uniform 
6.2 

18.6 

0.0109 

0.0170 

0.0123 

0.0208 

0.0120 

0.0183 

0.0847 

0.1224 

0.0755 

0.1254 

0.0875 

0.1149 

0.1127 

0.1139 

0.1036 

0.1258 

0.1100 

0.1152 

 

Table 7 250 data Mackey-Glass series – RMSE Comparisons AS – BLS & AS-LS vs. SVMs 

 1 step error 100 steps error dynamic error 

Noise NR % AS-BLS AS-LS SVM AS-BLS AS-LS SVM AS BLS AS-LS SVM 

normal 

11 

22.15 

44.3 

0.0229 

0.0312 

0.0406 

0.0323 

0.0307 

0.0464 

0.0222 

0.2860 

0.0398 

0.0842 

0.0955 

0.0941 

0.0795 

0.0946 

0.1078 

0.0715 

0.0928 

0.0933 

0.0646 

0.0779 

0.0958 

0.0795 

0.0851 

0.0963 

0.0680 

0.0804 

0.0879 

uniform 
6.2 

18.6 

0.0172 

0.0263 

0.0179 

0.0301 

0.0176 

0.0258 

0.0949 

0.0972 

0.1077 

0.1026 

0.0969 

0.0938 

0.0701 

0.0876 

0.0786 

0.0920 

0.0707 

0.0736 
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Note that AS-BLS improved the AS-LS exactly in situations not traditionally well suited for LS 

approaches, namely for sparse data sets polluted by not a Gaussian noise. Thus, as expected, 

constraining the weights helps in such situations. Note however that there are no too big 

differences in final RMSEs obtained. AS-(B)LS and SVMs show similar performances. 

Interestingly, AS-(B)LS seem to outperform SVMs in dynamic modeling 
 

However, there are differences in the final sizes of the models and in related training time 

needed. AS-LS method produces more parsimonious models (meaning the models having less 

SVs i.e., regressors i.e., hidden layer basis functions) than SVMs. There are always 1.5 to 3 

times less SVs in AS-LS and AS-BLS than in SVM network. This then leads to faster learning. 
 

The ε-insensitivity zone (tube) does not have big impact on the AS-(B)LS model’s quality. AS-

(B)LS model work fine for a wide range of ε. This comes from the fact that AS-LS doesn’t 

strictly aims at accommodating all the data within the tube, and the learning stops until there is 

no significant improvement in terms of RMSE over all the data. It’s different for SVMs trained 

by active set method, where in each step exact solution for selected k regressors has to be 

found, and the learning goes until all the data are conformed within the ε-tube (except some 

bounded SVs in soft regression). In SVM regression a small parameter ε leads definitely to a 

huge amount of support vectors. The regression only stops when all the data outside the ε-tube 

are chosen as a support vector. Therefore the new AS-LS algorithm is more robust against care-

less chosen parameters. 
 

Note that an AS-LS algorithm can be readily extended to perform the weighted least squares in 

order to calculate the weights wi i = 1, k at each step. As it is very well known, the weighted LS 

solution for a weight vector w is 
 

( )\( )k=w WH Wy . 
(44) 

 

where the (N, N) weigh matrix W is a diagonal matrix containing ones for supporting data 

points and the weighing factor 0 1υ≤ ≤  for the other ones. The basic version presented here 

weighs the errors at all the data points equally (i.e., the weighing factor υ = 1). By weighing the 

errors on the selected support vectors by υ = 1, and the ones at the other data points by a weigh-

ing factor υ = 0, AS-LS method becomes very close to the active set method for solving the 

SVMs’ QP problem. The only difference in this case is that in an active set solving of the 

SVMs’ QP problem one approximates either the values   or  
i i

y yε ε+ − and not exactly the 

target values yi as in AS-LS. The tiny difference can be easily incorporated within the weighted 

AS-LS and this will be investigated as a continuation of the research on the AS-LS algorithm. 

At the time of writing this report, we have also run the weighted AS-LS. However, we postpone 

its presentation at the moment. The weighted AS-LS is still an interesting research avenue 

which will be reported about after getting more theoretical understanding and/or after collecting 

more experience and results later. Note that in addition to the width parameter of Gaussian basis 

functions (or to the order of polynomial, or to other ‘geometric’ parameters of basis functions) 

and to the penalty parameter C, the weighted LS brings a new design parameter into the train-

ing – weighing factor for non-supporting data points υ for which the following is valid -

0 1υ≤ ≤ . This only means a longer training stage which may possibly be rewarded with much 

improved models. Thus, this avenue of investigating the characteristics of the weighted AS-LS 

is worth of walking on in the future. 
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Conclusions 

The report presents novel learning algorithm called Active Set Least Squares (AS-LS) for solv-

ing regression problems. AS-LS is suitable for training various data modeling networks notably 

kernel machines a.k.a. SVMs, RBF (a.k.a. regularization) networks and multilayer perceptron 

NNs. For an implementation of the AS-LS training, the basis functions don’t have to be strictly 

(semi)positive definite. Any basis functions ensuring the full rank (linear independency of the 

column) of design matrix H can be utilized within the ‘hidden layer neurons’. Also, more than a 

single basis function per a training data can be used at the cost of the prolonged learning time 

only. 
 

The AS-LS learning rule originates from an extension of the active set training algorithm for 

SVMs as presented in (Vogt and Kecman, 2004, 2005). Unlike at SVMs, in the AS-LS algo-

rithm, all the training data are used for calculating the weights wi of the regressors (i.e., SVs, 

i.e., basis functions) chosen at a given iteration step. Training phase is an iterative process and 

in each step the model size increases for one. In such an iterative algorithm the overdetermined 

least squares problem should be solved at each step. A novel updating learning algorithm for a 

QR factorization by using Householder reflections (HRs) is developed without ever calculating 

matrix Q. AS-LS produces sparse models (small number of SVs) and this, together with a new 

implementation of HRs, makes AS-LS a greedy fast algorithm.  
 

In addition, AS-LS algorithm with box-constraints -C ≤ wi ≤ C i = 1, NSV, has also been devel-

oped and this resembles the soft regression in SVMs. Constraining the weights improves the 

performance of AS-LS for sparse data sets and non-Gaussian noise significantly. Comparisons 

of AS-LS models to the SVMs show similar performances in terms of RMSE on a difficult 

Mackey-Glass chaotic time series prediction. However, in terms of the size of the final model 

AS-LS has an advantage because it produces significantly smaller networks. This also contrib-

utes to faster learning. While AS-LS algorithm without weights constraints learns fast and 

without any major numerical problems, there is still a lot of space for improving the learning 

algorithm for a constrained AS-LS method. The next step will also be an application and 

benchmarking of the AS-LS for classification problems. The results obtained on regression 

problems are encouraging. 
 

AS-LS training algorithm can also be looked at under different angle. Namely, the version of 

the AS-LS algorithm experimented with here can be readily extended into a weighted least 

squares algorithm. There is, then, even stronger similarity to the active set based solving of the 

QP problem for SVMs which, under this light, can be considered as an AS-LS method that 

weighs the errors at the selected supporting vectors with a weighing factor 1, and the ones at 

non-supporting vectors with a factor 0. An investigation of the properties and capacities of the 

weighted AS-LS will also be an interesting avenue for the future research. 
 

AS-LS iterative learning algorithm, is a subset selection algorithm and in this respect it is simi-

lar to many other methods (including orthogonal least squares, matching pursuit and QP based 

SVMs learning algorithm). In its unconstrained version, and in an addition to being greedy and 

fast method, it is also numerically very stable algorithm due to the impeccable properties of the 

QR factorization based on Householder reflections. 
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Appendices 

Subroutines for Householder iterative factorization 

 

function [U, R, y, rho] = hhcolappend(U, R, y, rho, newcol) 

% Updating the QR-factorization based upon Householder reflections for the AS-LS method        

% This function is specially optimized for column appending problems arising in AS-LS method,  

% where the matrix H is formed from the columns h_1...h_n.             

%  

% The linear least square problem min ||Hw -y|| is solved by applying Householder transformations  

% to matrix H and y. Matrix  H is transformed to an upper triangular matrix R_(k+1), y to y_(k+1). 

% 

% The solution of the linear least squares problem is obtained via backsubstitution:  

% w = backsubs(R_i,y_i)  

%                              

%  Initial function call:  U = [], R = [], rho = [], y_0, newcolum     

%  Following function call at k+1:   U_k, R_k, y_k,   rho_k, newcolum       

%  

%  

%  [1] Cleve Moler: Numerical computing with MATLAB.                  

%  [2] Matthias Mrosek: Modeling and Optimizing of a Biotechnological Reactor by SVMs   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

m = length(newcol);   %number of training data 

 

if isempty(U)         %if isempty U also isempty H -> first function call 

    i = 1; 

else 

    i = size(U,2) + 1;       

end 

 

if i>m 

    display('Undertermined system of equations cannot be solved.') 

else     

  %--- apply previous Householder reflections --- 

  for j = 2:i      

   utg = U(1:m+2-j,j-1)'*newcol(j-1:m)*rho(j-1);          %tau = rho*u'*h 

   newcol(j-1:m,1) = newcol(j-1:m,1) - U(1:m+2-j,j-1)*utg;%Th = h - tau*u 

   end %for j 

     

   %--- calculate vector u und rho for k+1th Householder reflection --- 
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   if sign(newcol(i,1)) == 0 

     sigma = norm(newcol(i:m,1)); 

   else     

     sigma = sign(newcol(i,1))*norm(newcol(i:m,1)); 

   end 

   U(1:m,i) = [newcol(i:m,1); zeros(i-1,1)]; 

   U(1,i) = U(1,i) + sigma; 

   rho(i) = 1/(sigma*U(1,i)); 

     

   %--- apply k+1th householder transformation to k+1th column --- 

   if i~= m 

    utg = U(1:m+1-i,i)' * newcol(i:m)*rho(i); %tau = rho*u'*h 

    newcol(i) = newcol(i) - U(1,i)*utg;        %only regard k+1th element, 

                                                  %all other are zero. 

   for k = 1:i                     %Update the nonzero values of the new 

      R(k,i) = newcol(k);         %column to R_(k+1) 

   end 

    

    %--- modify right side of equation --- 

    tau = U(1:m+1-i,i)'*y(i:m)*rho(i);            %tau = rho*u'*y 

    y(i:m) = y(i:m) - tau * U(1:m+1-i,i);         %Ty = y - tau*u 

     

    else 

    %---When the matrix is square the last element of the last column 

    %   hasn't to be reflected anymore, since the matrix is already upper 

    %   triangular --- 

    for k = 1:i                     % just update the new elements 

        R(k,i) = newcol(k); 

    end 

    end %if 

end %if i>m underdetermined system of equations 

 

function x = backsubs(R, y) 

% BACKSUBS.  Back substitution. 

% For upper triangular R, x = backsubs(R,y) solves R*x = y. 

[n,n] = size(R); 

x=zeros(n,1); 

x(n) = y(n)/R(n,n); 

for k = n-1:-1:1 

   j = k+1:n; 

   x(k) = (y(k) - R(k,j)*x(j))/R(k,k); 

end 
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An AS-LS Algorithm by QR Factorization Based on Householder Reflections in an 

Approximation of a 1-Dimensional Decreasing Undamped Sinus Function 
 

Here we present how the two algorithms presented on previous pages and implementing 

the Householder reflections work within an iterative updating scheme. The function to be 

modeled is a decreasing sinus  f = 4sin(x) - 10 – x, xi ∈ [-10, 11]. Twelve only noisy data 

are sampled. In the first step, the last point is the one having highest deviation and the up-

dating (12, 1) matrix U, upper triangular (1, 1) matrix R, updated target vector y (34) and 

the (1, 1) weight vector w are 
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The first selected Gaussian bell multiplied by w1 approximates the 12 given data as shown 

below. Note, the weight’s value equals the first entry of y divided by R1 i.e., w1 = y1 / R1 
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Figure A1 The approximation after the first iteration. True function (dashed red curve), 

data points (blue stars), approximator (solid blue curve), SVs (red encircled star), next se-

lected data point (big encircled data) 
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Now, the above encircled 9
th
 measurement is the worst violating point (it is the farthest 

point from the first solid blue approximation to data points) and adding the Gaussian ker-

nel centered at this point one gets the following Householder updates, 
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Note that the first and second supporting vectors (samples) are encircled in figure below. 
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Figure A2 The approximation after the second iteration. True function (dashed red curve), 

data points (blue stars), approximator (solid blue curve), and SVs (red encircled stars) 
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The updating goes as given on the next few pages, where only first 7 steps will be shown, 

as well as the final approximation with the change of the cost function during the itera-

tions. 

 

3
rd

 iteration: 
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Figure A3 The approximation after the third iteration. True function (dashed red curve), 

data points (blue stars), approximator (solid blue curve), and SVs (red encircled stars) 
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The updated target vector y is no longer shown due to the lack of the space below.  

 

4
th

 iteration: 

 

1.5075    1.4114    2.2839   -1.5164

0.0000    0.0111    0.8468   -0.4697

0.0000    0.0437    0.8905   -0.5315

0.0003    0.1335    0.6229   -0.4701

0.0022    0.3155    0.1333   -0.4047

0.0111    0.5704  
=U

 -0.3275   -0.3978

0.0439    0.7711   -0.5163   -0.4416

0.1353    0.7328   -0.3679   -0.4874

0.3247    0.3833   -0.0345   -0.4797

0.6065   -0.1198    0.2469    0.0000

0.8825   -0.4984    0.0000    0.0000

1.

-1.5075   -1.2404   -0.1098   -0.0012

  0.0000   -1.4093   -0.8287   -0.0450
,

  0.0000    0.0000   -1.6864   -0.7237

  0.0000    

0000    0.0000    0.0000    0.0000

 
 
 
 
 
 
 
 
 

= 
 
 
 
 
 
 
 
  

R

-17.1149

 -8.7044
, .

 -7.4374

0.0000    0.0000    1.3216   1.8718

   
   
   =
   
   
   

w
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Figure A4 The approximation after the fourth iteration. True function (dashed red curve), 

data points (blue stars), approximator (solid blue curve), and SVs (red encircled stars) 
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5
th

 iteration: 

 

1.5075    1.4114    2.2839   -1.5164   -0.3559

0.0000    0.0111    0.8468   -0.4697   -0.1470

0.0000    0.0437    0.8905   -0.5315   -0.0906

0.0003    0.1335    0.6229   -0.4701    0.0037

0.0022    0.31

=U

55    0.1333   -0.4047    0.0719

0.0111    0.5704   -0.3275   -0.3978    0.0929

0.0439    0.7711   -0.5163   -0.4416    0.0803

0.1353    0.7328   -0.3679   -0.4874    0.0562

0.3247    0.3833   -0.0345   -

-1.50

,

0.4797    0.0000

0.6065   -0.1198    0.2469    0.0000    0.0000

0.8825   -0.4984    0.0000    0.0000    0.0000

1.0000    0.0000    0.0000    0.0000    0.0000

 
 
 
 
 
 
 
 
 

= 
 
 
 
 
 
 
 
  

R

75   -1.2404   -0.1098   -0.0012   -0.0045

 0.0000   -1.4093   -0.8287   -0.0450   -0.1136

 0.0000    0.0000   -1.6864   -0.7237   -1.1234

 0.0000    0.0000    0.0000    1.3216    1.3086

 0.0000    0.0000

-16.8181

 -9.1559

,  -6.2642 .

  6.6859

    0.0000    0.0000    0.2527  -4.8622

   
   
   
   =
   
   
      
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Figure A5 The approximation after the fifth iteration. True function (dashed red curve), 

data points (blue stars), approximator (solid blue curve), and SVs (red encircled stars) 
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6
th

 iteration: 

 

1.5075    1.4114    2.2839   -1.5164   -0.3559   -0.1466

0.0000    0.0111    0.8468   -0.4697   -0.1470   -0.0517

0.0000    0.0437    0.8905   -0.5315   -0.0906   -0.0562

0.0003    0.1335    0.6229   -

=U

0.4701    0.0037    0.0057

0.0022    0.3155    0.1333   -0.4047    0.0719    0.0680

0.0111    0.5704   -0.3275   -0.3978    0.0929    0.0350

0.0439    0.7711   -0.5163   -0.4416    0.0803   -0.0915

0.1353    0.7328   -0.3679   -0.4874    0.0562    0.0000

0.3247    0.3833   -0.0345   -0.4797    0.0000    0.0000

0.6065   -0.1198    0.2469    0.0000    0.0000    0.0000

0.8825   -0.4984    0.0000    0.0000  

-1.5075   -1.2404   -0.1098   -0.0012   -0.0045   -1.6900

 0.0000   -1.4093   -0.8287 

,

  0.0000    0.0000

1.0000    0.0000    0.0000    0.0000    0.0000    0.0000

 
 
 
 
 
 
 
 
 

= 
 
 
 
 
 
 
 
  

R

  -0.0450   -0.1136   -0.4021

 0.0000    0.0000   -1.6864   -0.7237   -1.1234    0.0862

 0.0000    0.0000    0.0000    1.3216    1.3086    0.0371

 0.0000    0.0000    0.0000    0.0000    0.2527    0.0685

[ ]

,

 0.0000    0.0000    0.0000    0.0000    0.0000    0.1418

-47.9982  -21.9568   -1.5187   15.5551  -14.8672   36.9206 .
T

 
 
 
 
 
 
 
 
  

=w
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Figure A6 The approximation after the sixth iteration. True function (dashed red curve), 

data points (blue stars), approximator (solid blue curve), and SVs (red encircled stars) 
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7
th

 iteration: 

 

1.5075    1.4114    2.2839   -1.5164   -0.3559   -0.1466    0.1827

0.0000    0.0111    0.8468   -0.4697   -0.1470   -0.0517   -0.0381

0.0000    0.0437    0.8905   -0.5315   -0.0906   -0.0562   -0.0548

=U

0.0003    0.1335    0.6229   -0.4701    0.0037    0.0057    0.0447

0.0022    0.3155    0.1333   -0.4047    0.0719    0.0680    0.0965

0.0111    0.5704   -0.3275   -0.3978    0.0929    0.0350   -0.0216

0.0439    0.7711   -0.5163   -0.4416    0.0803   -0.0915    0.0000

0.1353    0.7328   -0.3679   -0.4874    0.0562    0.0000    0.0000

0.3247    0.3833   -0.0345   -0.4797    0.0000    0.0000    0.0000

0.6065   -0.1198    0.2469    0.0000    0.0000    0.0000    0.0000

0.8825   -0.4984    0.0000    0.0000    0.0000    0.0000    0.0000

1.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000









,

-1.5075   -1.2404   -0.1098   -0.0012   -0.0045   -1.6900   -0.4855

0.0000   -1.4093   -0.8287   -0.0450   -0.1136   -0.4021   -1.5306

0.0000    0.0000   -1.6864   -0.







 
 
 
 
 
 
 
 
 
 
 
 
 

=R

7237   -1.1234    0.0862   -0.8532

0.0000    0.0000    0.0000    1.3216    1.3086    0.0371   -0.2387

0.0000    0.0000    0.0000    0.0000    0.2527    0.0685   -0.3197

0.0000    0.0000    0.0000    0.00

[ ]

,

00    0.0000    0.1418   -0.2465

0.0000    0.0000    0.0000    0.0000    0.0000    0.0000   -0.1357

-80.1423  -54.7807  -19.2182   -1.8526    6.2553   83.1485   26.6042 .
T

 
 
 
 
 
 
 
 
 
 
 

=w

 

 

The presentation of iterative approximations and all the matrices and vectors involved is 

stopped here due to space limitation. On the next page the final approximation obtained by 

10 supporting basis functions, together with the dynamics of the RMSE cost function dur-

ing the iterations are shown. (RMSE cost is the square root of the sum of error squares di-

vided by 12 i.e., by the number of the training data points, as given in (43)). Curious reader 

may easily understand the advantages of an updating of the matrices U and R, as well as of 

the vector y by a careful tracking of the changes at each iteration step. It may be seen that 

at every updating step only a single new column of U and R is calculated and appended to 

the existing matrices while the previously stored columns stay unchanged. Also, at each 

step the new target vector y is created according to (34). All the updating calculations men-

tioned are done in the routine hhcolappend which is followed by the program backsubs for 

computing the weight vector w from the updated R and y. 
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Figure A7 The final approximation after the tenth iteration. True function (dashed red 

curve), data points (blue stars), approximator (solid blue curve), and SVs (red encircled 

stars). Note that all the training data are accommodated within the ε-tube, and this is why 

the iterations are stopped. 
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Figure A8 The dynamics of the RMSE during the iterations. 



Appendices     47 

Note that according to (27), the first value of the cost function which is the RMSE (mean-

ing equal to 

12 2

2

12

ii
y

=∑
) can be found from the vector y given in (A1) and it has the value 

7.2206 (see also Fig A8). In the same spirit, the next value of the RMSE shown in Fig A8 

can be calculated from the residual of the updated vector y from (A2) as follows 

12 2

3 4.9079
12

ii
y

= =
∑

, the third RMSE follows from (A3) as 

12 2

4  3.6955
12

ii
y

= =
∑

 and so 

on. This all results from the fact that after the QR factorization the lower part of the matrix 

 
 
 

R

0
 is an (N – k, k) zero matrix (obviously not shown on previous pages) which doesn’t 

have any contributions in reducing the error. Thus, the lower part of the updated vector y, 

namely y(k + 1, N) determines the values of the residual (i.e., sum of the errors squares at 

each data point left).  

 The learning phase is stopped after the 10
th

 update because all the training data have 

been accommodated within the ε-tube, despite the fact that the gradient of the RMSE is 

still big (RMSE curve’s slope is still significant) hinting that by adding a new SV to the 

existing ones the RMSE can be reduced much farther. AS-LS is inspired by and it origi-

nated from the active set SVMs learning algorithm, and thus, the SVMs stopping criterion 

is used here too. However, it should be mentioned that another stopping criterion was ac-

tive much more often in modeling Mackey-Glass time series. Usually, the learning stopped 

because there is no longer significant improvements of the RMSE (say, change of the 

RMSE per step is smaller than 10
-9

), while some data points are still outside the tube. 

 In a simulation above, the widths of all the Gaussian RBFs (bells) has been equal to a 

double average distance between the data points (centers of the Gaussian bells) and thus 

2 3.8182cσ = ∆ = . 

 Finally, the MATLAB’s implementation of the two algorithms presented earlier is as 

follows: hhcolappend is called as: [U, R, y, rho] = hhcolappend(U, R, y, rho, newcolum). In 

the first function call, if working without bias, U, R and rho are empty, y is the original 

target vector and newcolumn is the column of the complete (N, N) design matrix corre-

sponding to the data point having maximal absolute value of the target vector y. (Note, 

however, that the complete (N, N) design matrix will be neither needed nor calculated at 

any stage. In each iteration step, just a basis function associated with the data point where 

there is the biggest deviation from the approximating function, will be added to a previous 

design matrix). In the next iteration the variables U, R, rho and y just calculated and ac-

companied by new newcolumn vector are the new input arguments. The solution of a lin-

ear least squares problem (weight vector w) is obtained by back substitution as    w = back-

subs(R, y). If working with a model having a bias term b, U, R and rho are empty, y is the 

original target vector and newcolumn is the (N, 1) column of ones, at the first call of the 

hhcolappend routine. 
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